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LElTER TO THE EDITOR 

Lattice decorations and one-dimensional percolation 

G Ord and S G Whittington 
Department of Chemistry, University of Toronto, Toronto, Canada M5S 1Al 

Received 6 August 1985 

Abstract. It is well known that in long range one-dimensional percolation the critical 
exponents depend on the range. We discuss a family of decorations which have range- 
dependent exponents in one dimension, although the corresponding decorations in higher 
dimension preserve the values of the exponents. These decorations clarify the unusual 
nature of one-dimensional percolation. 

One-dimensional percolation is of interest primarily for two reasons. Firstly, several 
one-dimensional problems are exactly soluble and secondly, exponents are found to 
be range dependent (Klein er al 1978, Shalitin 1981, Zhang e? al 1983, Li e? al 1983, 
Schulman 1983). This result was unexpected in the light of the universality hypothesis 
which, loosely speaking, suggests that exponents should depend only on the dimension 
of a lattice, and not on its detailed structure. In dimensions greater than one, the 
universality hypothesis is convincingly supported through numerical evidence (see, 
e.g., Gaunt and Sykes 1983) and through contact with thermal critical phenomena 
(Kasteleyn and Fortuin 1969). However, by phrasing the one-dimensional many- 
neighbour site problem in spin language, Klein er a1 pointed out that the many- 
neighbour percolation problem mapped on to an Ising-like problem with multi-spin 
interactions. Such multi-spin interactions have been known to change exponents 
(Baxter and Wu 1973). However, it is not clear why such interactions affect one- 
dimensional exponents but not exponents in higher dimensions. 

Although the universality hypothesis remains unproven for any pair of unrelated 
lattices, the hypothesis has been verified on families of lattices related by particular 
forms of bond or site decoration (Ord er al 1984, Ord and Whittington 1985). In these 
papers, it was found that the exponents were invariant under decoration provided that 
the critical threshold p c  of the parent lattice was in the open interval, pCc (0 , l ) .  It was 
also found that if p c  = 1 the exponents (2 - a), p, 7, S and v could be changed, through 
site decoration, by integer multiples. In this letter we shall show that the decoration 
families in which exponents are range independent in higher dimensions, have range- 
dependent exponents in one dimension due to the triviality of the percolation threshold. 

The one-dimensional many-neighbour site problem has been solved by the generat- 
ing function technique (see Reynolds e? a1 1977, Klein et a1 1978). We illustrate the 
generating function technique for the one-dimensional first-neighbour problem as 
follows. We occupy sites with density p and ‘ghost’ sites with density h. The mean 
number of clusters of size s, not connected to any ghost site, normalised per occupied 
site is 

n,(p,  h )  = (1 - p ) 2 p ” - ’ (  1 - h y ,  s a  1. 
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The mean number of clusters per occupied site is then just 

= q2 ps-yl-  h)' 
sa 1 

where q = 1 - p .  
This generalises to 1 nearest neighbours as (Klein et a1 1978) 

From (2) we see that p c  = 1 for all 1 and we note that in the neighbourhood of q = h = 0 

so that with scaling fields q and h, the scaling powers of q and h are respectively 

ah = 1 ( 6 )  1 a4 = 1- 

and (Hankey and Stanley 1972) 

p = 0  s=cn y = l  2-(U=l. ( 7 )  

Using hyperscaling, or through direct calculation, one also has 

Y = 1. (8) 

An alternative and instructive way to approach this type of many-neighbour problem 
is through site decorations (Ord and Whittington 1985). 

For a lattice L, we create an n-pole decoration L" of the lattice by replacing each 
site on L with a complete graph on n vertices (an n-pole), and each bond on L by 
the additional bonds needed to convert two neighbouring n-poles into a complete 
graph on 2n vertices. 

To make contact with many-neighbour percolation in one dimension we let L be 
the one-dimensional lattice. We define a lattice 2" and number the sites on this lattice 
by k = ni + j ,  where i numbers the n-poles and j numbers the sites in an n-pole, 1 S j  S n, 
in L". 2"' is topologically identical to L" and is a one-dimensional lattice with isotropic 
many-neighbour interactions up to n sites, and anisotropic interactions up to 2n - 1 
sites. In figure 1 we give an example in which n = 2. 

We define a mapping from configurations on L" to configurations on L such that 
a site is occupied on L if and only if at least one site is occupied in the corresponding 
n-pole on L". A cluster is the section graph of L or of L" induced by the occupied sites. 
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Figure 1. 
equivalent many-neighbour lattice Y2. 

A one-dimensional lattice L, two-pole decoration L2 and the topologically 

If sites on L" are occupied uniformly and independently, with probability p ,  then 
the induced site density on L is given by 

fn (p)= l - ( l -p ) '*  
Quantities such as the mean number of clusters K ( p ) ,  percolation probability P ( p )  
and the mean size of finite clusters S ( p ) ,  can be related on L" and L by functional 
composition with J: It has been shown that since f (  p )  is continuously differentiable, 
the critical exponents are invariant under such decorations, provided that the critical 
density p c  on L is in the open interval ( 0 , l )  (Ord er a1 1984, Ord and Whittington 1985). 

To obtain exponents for the many-neighbour one-dimensional lattices 9" we 
calculate the generating function 6 , , ( p ,  h )  on the decorated lattice. We note that 

; i ( p ,  h )  = q 2 " p s - - ' q n J - s  ( 1  - h)"Cf/ n (9) 

where r?; is the number of clusters of size s spanning j poles, q2" accounts for the two 
perimeter empty poles, accounts for the empty sites within the pole cluster, and 
CCf is the number of ways of distributing s sites in j n-poles such that no pole is empty. 
The factor of n accounts for normalisation per site. We note that the generating 
function of the Cf is 

F, ( s )  = ( nx + (;) x2+ .  . . + (n") .")' 
nj 

= CJXk 

= [(l+x)"-11'. 

k = j  

Thus 
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For h<< 1 this may be written as 

Thus we see that the n nearest-neighbour problem and the n-pole decoration are 
related to the single-neighbour problem by functional composition of the same density 
function fn. The difference in the two problems occurs only in the appearance of the 
scalar field h n p l f ,  ( p )  and the multiplicative prefactor in (12). These differences do 
not affect the asymptotic behaviour since near p = 1, h = 0: 

&P, h )  - q 2 " / ( 4 "  + n h )  (13) 

and we see that the decorated lattice has the same exponents as those in (7) and (8). 
Thus site decorations, which preserve exponents in higher dimension, do not do 

so in one dimension. The changing of the exponents by a factor of n is a direct result 
of the vanishing of the first n - 1 derivations of fn( p )  at pc  (see Ord and Whittington 
1985). In one dimension, the number of derivatives which vanish depends on the 
range of interaction in both the isotropic and anisotropic cases. In higher dimensions, 
where in general pc  f 1, the first derivative is non-zero in the anisotropic case, so that 
the exponents are range independent. This strongly suggests that exponents are also 
range independent in the isotropic case. 
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